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Abstract. Transformations which leave theq-oscillator algebra invariant are considered. In 
general there exists no uniqueness theorem for the q-oscillator case. It is proven, however, 
fhaf the analogue of von Neumann's theorem exists for a certain class of transformations. An 
essential pm of these transformations is defined by the relation between the elements a+a and 
N involving a constant. The latter can be interpreted as a central element of the q-oscillator 
algebra The explicit form of non-unitary tiansformadons with invariance of the algebra is 
obtained as well. 

' 

1. Introduction 

Quantum groups [l-31 and q-oscillators [+IO] have recently been the subject of intensive 
study. The simplest q-oscillator satisfies the relations: 

aa+ - qa+a = q-N q c R o r q ~ C ,  Iq1=1 (1) 
[N, U ]  = -U [N, a'] =a' (a.')' = a fl = N. (2) 

In this paper we consider the transformations, which leave the relations (I), (2) (for 
brevity we call them 'q-algebra') unchanged. We restrict ourselves to the case of irreducible 
representations only. It is well known, that in the case of Heisenberg algebra 

bb' - b'b = 1 [ N ,  b] = -b (b+)+ = b N = b+b (3) 

the analogous problem in Hilbert space is solved by the von Neumann theorem (see, e.g. 
[ 1 I]). We prove, that in the case of q-algebra representations in some inner product space 
all the transformations, which leave this algebra invariant are reduced to a combination of 
transformations described by a unitary operator (the analogue of von Neumann's theorem) 
and of transformations, the explicit form of which are known (cf (30)). In addition, we 
obtain formulae relating the a(q) with different values of q. 

In section 2 a general formula, which relates aa+ and a+a with N is obtained (cf (21)). 
Here the space, in which the operators a and a+ act, is realized as the space cons"cted 
out of eigenvectors of operator N. (As usual, one assumes that the operator N has at least 
one eigenvalue). In the general case the relation between aa+(a+a) and N contains some 
real constant C.  This constant is related to the value of the central element found in [9,10] 
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for the irreducible representation we are working in. Due to this fact, the transformations 
which leave the q-algebra invariant, change in general both C and N but can also leave 
one of the two unchanged. 

The unitary irreducible representations have been classified in [9, lo]. However, we 
obtain new ones with indefinite metric. In the general case, i.e. for arbitrary C ,  the space in 
which the operators a and a+ act, is a space with an indefinite metric [ 121, and unitarity is 
understood as the one with respect to indefinite scalar product. We recall, that spaces with 
indefinite metric could be of interest in quantum gauge field representation theory where 
they have been widely used (cf e.g. [13,14]). 

In section 3 the analogue of von Neumann's theorem is proved. The proven theorem is 
actually applicable to any arbitrary algebra, in which the relations (2) are satisfied and when 
there exists one-to-one relation between the operators aa+, a+a and N .  The concrete form 
of commutation relations does not play any role, i.e. the relation (1) can be replaced by a 
more general one like (27). 

In section 4 we obtain the explicit form of transformations which relate the operators a 
and U+ for different values of C, but for the same N .  It is shown that the transformation: 
a -+ ii , C + e, N + N is possible only when the constants C and e are related to 
each other in a specific way. Namely, the whole region of C values is divided into a series 
of intervaIs, such that the operators belonging to one of these intervals can be related to 
each other. If the value of C and e belong to different intervals, then the corresponding 
operators constitute the realization of the q-algebra in different spaces. In the same section 
we obtain formulae relating a(q) with different q and we find the regions of q values when 
such a transformation is possible. 

2. General relations between the operators aa+, a+a and N 

To obtain a general formula which relates aa+(a+a) with N ,  we notice that 

We restrict ourselves to irreducible representations. Thus aa' and a+a can be written in 
the form 

aa+ = [ N  + 11 +qq(a, a+) a+a = [NI + q(a, a+). (5) 

As we consider an irreducible representation of q-algebra, N is some function of a and U+. 

We prove, that actually q(a, a+) depends only on N ,  

d a ,  a+) = "0 (6) 

and then we obtain the explicit form of q(N). At first let us show that 

q(a, a+) = (o(aa+, N )  . (7) 

Since [aa+, NI = [a+a, NI = 0 according to (2), one has [q(a, a+), N ]  = 0. Equation (7) 
is a special case of the statement that any function @(U, a+), which satisfies the relation 

[@(a, a+), NI = 0 (8) 
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is actually a function of only aa+ and N, 

*(a, U+) = *(UU+, N). (9) 

To prove (9), we notice that the expansion of an arbitrary (non-singular) function *(a, a+) 
into a power series with respect to a and a+ has the form 

Index U designates the ordering of operators a and U+ in the polynomial. It is easy to see, 
that the commutation relations (2) allow us to rewrite (10) as 

Taking into account that, according to (2), [N, a"] = -nu" and [ N ,  a+"] = nu+*, we see 
that the condition (8)  is^ fulfilled only if all the @,?, i = 1,2 vanish, i.e. if the function 
q(u, a+) is of the form (9). Thus (7) is proven. In order to pass tiom (7) to (6), we notice 
that for the special case @(U, a+) = N, (9) becomes 

N = p(aa+, N )  . (12) 

Equation (12) corresponds to a functional dependence as it is implied by (6). To obtain the 
form of the function @(N) ,  we prove that it satisfies the relation 

rp(N + 1) = q W 9 .  ' (13) 

Indeed, according to (3, one has 

uu+u = IN + l]a + q(o(N)a aa+a = a [ N ]  + arp(N) = [ N  + l]a + (p(N + 1)a. 

In the latter equation we have used the fact that a@(N)  = @ ( N +  l)a, which follows from 
(2) for an arbitrary function @(?I). Comparison of the two expressions for aa+a leads to 

To solve (13). we first find the spectrum of operator N .  We notice that if la) is 
an eigenvector of the operator N : NIa)  = ala), then by making the transformation 
a + qUlzu, U+ + q%+ and N + N' = N - a, which leaves the q-algebra invariant, 
we obtain that 

(13). 

"la) = 0. (14) 

The latter transformation is supposed to give sense to q taken to any power. In the other 
cases we can prove, that spectrum of N is a + Z ,  0 < a! i 1. In this case the results remain 
unchanged up to evident modification. Thus, by performing the above transformation we 
can arrive at the case when the operator N has the eigenvector IO), such that 

NIO) = 0 (010) = *l . (15) 

In the inner product space the case (010) = 0 is also possible, but then (cf (23)) all scalar 
products are equal to zero (isotropic space). 
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Using (1). (2) and (15) one sees that there exists a set of vectors In), such that 
N l n )  = nln) n = O , f l ,  1 2 , .  ..,&CO (16) 

where the vectors In) and In - 1) are related as 
In) = ~ , a + l n  - I) ~n - I) = &zln). (17) 

The normalization constants C, and e,, are chosen so that 

(nlm) = C",S., c,, = f l  . (18) 
If (nln) = 0 for some n, then it can be shown that vectors P(a,a+)ln) form invariant 
subspace in contradiction with irreducibility of the representation under consideration, 
P(u, a+) being an arbitrary polynomial. Notice that due to hermiticity of the operator 
N (in the general case with respect to indefinite scalar product), (nlm) = 0 for n # m. 

Thus as a result of the operator N being a self-conjugate one, the vectors In) constitute 
an orthonormal basis. 

We emphasize that (16) follows only from (15) and the commutation relations (2). The 
constant values C. and en are determined from (18). 'Il~us, the space in which the operators 
a and a+ act is the space of all finite linear combinations of vectors In) and their limiting 
values. In other words, it is the closure of the space of all finite linear combinations of 
the vectors In). An important property of this space is its non-degeneracy, i.e. absence of 
vectors orthogonal to all the vectors of the space. Indeed, any vector of this space has the 
form: la) = C,or.In). Clearly, among a, there must exist some ak, such that ak # 0. 
Then (orlk) = ak # 0. From the non-degeneracy of the space, the following statement, 
which plays a crucial role for derivation of the main results, follows: if A and E are two 
operators, such that 

where lor) and IS) are arbitrary vectors, then A = E .  Indeed, suppose that A - B # 0. 
Then there should exist a vector IS), such that ( A  - E)I@)  = IS') # 0. According to (19) 
then Ip') would be orthogonal to all the vectors of the space and because of nondegeneracy 
it should vanish. 

(alAIS) = (@IBIS) (19) 

Consider now the solution of (13). Clearly 

"OlW =q"P(N - k)lW = q"f(0)lk) 

9 ( N )  = C'qN.  (21) 

aa+ = [ N  + 11 + C'qN+' = [ N  + 1Ic 

(20) 
where ~(0) = C' is some number. Then 

Thus it is proven that 
(22) 

where [MI, = (CqM - q-M)(q - q-l)-', C' = (C - l ) (q  - q-')-'. The constant C' is 
related to the central element of the q-oscillator algebra [9]. From the hermiticity of the 
operators aa+ and N it follows that C' is a real number when q is real. If q is complex, it 
is easy to see, that C' = 0. 

Equations (22) and (1) allow us to determine the constants C, and Cn. A simple 
calculation shows that if la:) = ~"10). lan) = a*lO). then 

(a:la,f) = [nl,[n - 11,. . . [1l,(olo) 

It is easy to see that [nIc, [-n], can have an arbitrary sign and therefore the space in 
general, i.e. for arbitrary q and C, is a space with indefinite metric (the properties of such 
spaces are described in detail in [12]). 

U+U = [NI ,  

= 1-n + M - n  + 21,. . . [O],(OlO). 
(23) 
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3. von Neumann's theorem for the q-oscillator algebra 

We now obtain the main result, namely we prove the following theorem: let ai and 
U:, i = 1,2, be two irreducible representations of the q-oscillator algebra (1) and (2) 
in spaces Jj correspondingly. Let the relations between ais:, a+aj and N be given by (22) 
in which C does not depend on i .  If in each of the spaces J, there exists a vector IOJ, such 
that NilOj) = 0 then there exists a unitary (or quasi-unitary) operator V, such that 

a2 =valv-' u2 + - -~ Va+V-' Nz = VNIV-'. (24) 
By definition, quasi-unitary operator is an operator satisfying the relations: VV* = V'V = 
-1. We emphasize that unitarity of operator V means the unitarity with respect to indefinite 
scalar product. It is sufficient to consider only the case when (01 101) = (&I&), because the 
proof in the case (OllOl) = -(&I@) is similar. If (01l01) = (OZ~@), then V is an unitary 
operator; if (OllOl) = -(&[02), then V is a quasi-unitary one. 

For the proof, we notice that to any arbitrary vector lal) of the space 51, one can 
put into correspondence a vector Iaz) of the space. Jz, which is expressed in terms of the 
vectors Inz) in the same way as la,) is expressed in terms of Inl). Let us prove, that the 
above-mentioned correspondence preserves the scalar product, i.e. for arbitrary vectors we 
have 

(w181) = (azl82). (25) 
To prove (25), we observe that for an arbitrary function @(N) the following equation is 

valid 

(Oll@Wl)lOI) = ~ ~ z l @ w z 2 ) l ~ z ) ~  
Using the commutation relations (2) and (22) we obtain that (aiIBi) = (Oil@(Ni)lOi), where 
the functional form of @(I%) does not depend on i ,  i.e. (25) is proven. 

Now introduce the operator V: Iaz) =Vial). According to (25), (allV+VlpI) = 
(allp1). We prove that V+V = 1, i.e. V is an isometric operator. Since the operator v 
provides with a one-to-one correspondence between the spaces J1 and Jz, then there exists 
an inverse operator V-'. In such a case, as easily seen, from the equality V+V = 1 follows 
that VV+ = 1, i.e. V is a unitary operator. The required (24) is then a direct consequence 
of unitarity of V and of (25). Indeed, let [pi)  = ail&). According to previously proven: 
(aiI81) = (azlh). but lad = Vlad ,  184) = VIS;), and consequently 

~allall8;) = ~aIIV+a2vIB;). (26) 
Taking into account (19), we see that (26) is equivalent to (24). The theorem is proven. 

Let us mention two interesting points, that the specific form of the commutation relations 
(1) has not been used for the proof of the theorem. ~ This means that the theorem remains 
valid if the q-algebra is replaced by a generalized q-algebra, in which (1) is replaced by 

(27) 
(the relations (2) remaining, of course, the same). The only condition that &e function 
t ( q ,  N) ought to satisfy, is the possibility of obtaining formulae analogous to (22). 

Since for complex q values C = 0, then the Theorem is valid also in this case, including 
the exceptional values of q = (-1)?". 

Furthermore, if C = 0, then aa+ and a+a do not change with the replacement 
q + q-'. Thus (for C = 0) the theorem cambe applied also for the transformation 
a(q) -+ a(q-'), a+(q) + a+(q-'), N ( q )  + N(q-') ,  to obtain that in this case a(q) and 
a(q-'), e.g. are related by a unitary transformation. 

aa+ - qafa = t ( q ,  N )  
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4. Non-unitary transformations which leave the palgebra invariant 

An arbitrary transformation in a given space which leaves the q-algebra invariant can also 
be chosen specifically so that it leaves either C or N unchanged. 

Consider a transformation which does not change N .  First of all we notice that if 
Ci, 3, a and a+ are. operators which satisfy the relations (1) and (2) with the same N, 
then 

Ci = (o(N)n ii+ = U + ( o ( N ) .  (28) 

Assuming that the dependence of ii on a has a more general form, 2 = (o(a,a+), and 
repeating the arguments which led us to prove (6), we obtain that (o(a,a+) = (o(N)a. 
Indeed, the general form of the function (o(a,a+) is determined by (11). It is easy to see 
that relation [Z, NI = 4 is possible only in the case when all the terms in (11) vanish 

to determine the form of the operator q ( N ) .  Indeed, 
except 9, (1) a ,  since [ N ,  a"] = -na", [ N ,  a'"] = n a " .  Equations (28) and (2.0) allow us 

~ c i +  = (o(N)na+p(N) = (02(N)aa+ (29) 

and using aa+ = [ N  + 1Ic, ZCi+ = [N + 11: (cf (22)), we obtain that 

Q(N) = [ N  + 1 1 3 N  + 1 p .  (30) 

We emphasize that the transformation (30) is meaningful only for such values of C and e, 
for which (00 is a well-defined operator. Consider this equation in more detail. Obviously, 
it is sufficient to study only the case (010) = 1. 

(1) Let 1 < q 

If C > 0, then 

W. 
Then the sign of [nlc coinci$es with the sign of Cq" - q-". If C < 0, then In], < 0. 

[klc = 0 if c Ck = q-= . (31) 

From (31) one sees that [n], z 0, if n 
values of C is divided into the intervals Rk: 

k, and [nIc 0, if n < k. In this way the set of 

C E Rk if CX+I < C < ck . (32) 

(2) Let 0 < q c 1. 
Then the sign of [n], is opposite to the sign of Cq" - q-". If C < 0, then [n], > 0, i.e. 

our space is the usual Hilbert space. If C > 0, then the solution of [n], = 0 is, as before, 
given by (31). The set of values of C is divided into the intervals 4: 

(33) 

So if C # Ck and C > 0, then the eigenvectors of operator N are. In), where 
n = 0, f l ,  . . . , i w .  In this case if C E Rk (or C E RL), then all the vectors In) with fl > k 
are positive, and for n c k (nln) = (-1)'-". When C c 0, then for 1 < q < CO we have 
(nln) = 1 if n = 2, and (nln) = -1 if n = 2t + 1. When 0 < q 1 and C < 0, then 
(nln) = 1. When C = ck, then the chain of eigenvectors of the operator N is truncated 
at some vector In) from below or from above depending on which of the two conditions 

c E RL if c k  C c < ck+l  . 
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aln) = 0 or a'ln) = 0 takes place. At this point we use irreducibility of representation under 
consideration. In this case, by making the transformation N + N - it, a(q) + q"I2a(q) 
and a+(q) + q%+(q) we arrive at the case when the operator N has either the spectrum 
(0.1, . . . , n,  . . .CO) or (-CO, . . . - i t ,  . . . - 1.0). The transformation (30) is well defined, if 
&N) is a positive operator, i.e. [n  + I]& + l]yl z 0 for any n. This obviously happens 
in the case when e E RX and C E RX (or e E R; and C E R;). Thus (30) relates the 
operators ci and a, if both and C belong to the same interval R k  (or RL). In the opposite 
case operators a and 5 act in different spaces. 

In full analogy one can consider the question about the relation between the operators 
a(ql) and a(q2) with C and N unchanged. It is easy to see that the form of the formula 
(30) remains the same, but now 

Analogously to the forthmentioned, one can analyse bow the set of q values gets divided 
into regions in which (34) is valid. In the special case, when C = 1, q1 = q and q 2  = 1, 
the formula (34) coincides with the one obtained in [8]. Finally, an equation analogous to 
(34) is valid also for the case with the transformation q1 -+ 42. C1 + CZ and N + N .  

To summarize, we have fully classified the transformations which leave the q-oscillator 
algebra invariant. 
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